# RPB-2ZSMI-UNI <br> bistable - impulse relays 

RPB-2ZSMI-UNI

## RESISTANCE <br> TO INRUSH <br> CURRENT $80 \mathrm{~A}(20 \mathrm{~ms})$

- Bistable - impulse relays type "ON-OFF", multifunction - sequential with memory
- Cadmium - free contacts $2 \times 1$ NO • AC/DC input voltages
- Cover - modular, width $17,5 \mathrm{~mm}$
- Direct mounting on 35 mm rail mount acc. to EN 60715
- Working with momentary bell switches or control buttons (2)
- Compliance with standard EN 61810
- Recognitions, certifications, directives: RoHS, EMC © ( $\in$ EH[ UK
$2 \times 1$ NO
$\mathrm{AgSnO}_{2}$
300 V AC / 300 V DC
16 A / 250 V AC
16 A / 24 V DC
$80 \mathrm{~A} \quad 20 \mathrm{~ms}$ ©
16 A
4000 VA
2500 W
300 W max. 500 W for $33 \mathrm{~W} \times 15$ LED lamps 4
$1 \mathrm{~W} 10 \mathrm{~V}, 10 \mathrm{~mA}$
$\leq 100 \mathrm{~m} \Omega$
600 cycles/hour
3600 cycles/hour

| $12 \ldots 240 \mathrm{~V}$ | terminals $(+) \mathrm{A} 1,(-) \mathrm{A} 2$ |
| :--- | :--- |
| $\mathrm{AC}: \geq 0,15 \mathrm{U}_{\mathrm{n}}$ | $\mathrm{DC}: \geq 0,05 \mathrm{U}_{\mathrm{n}}$ |
| $0,85 \ldots 1,15 \mathrm{U}_{\mathrm{n}}$ |  |
| $\leq 1,8 \mathrm{~W}$ |  |
| no |  |
| $0,85 \mathrm{U}_{\mathrm{n}}$ |  |
| $\geq 55 \mathrm{~ms}$ |  |

250 V AC
4000 V $1,2 / 50 \mu \mathrm{~s}$
III
2
V-0 for modular cover, UL 94
4000 V AC type of insulation: basic
1000 V AC type of clearance: micro-disconnection
2500 V AC type of insulation: basic
$60 \mathrm{~ms} / 60 \mathrm{~ms}$
$0,5 \times 10^{5} \quad 16 \mathrm{~A}, 250 \mathrm{VAC}$ ©
$10^{7}$
1:1
90 © $17,5 \times 64,6 \mathrm{~mm} / 80 \mathrm{~g}$
$-40 \ldots+70^{\circ} \mathrm{C}$
$-20 \ldots+55^{\circ} \mathrm{C}$
IP 20 EN 60529
up to $85 \%$
$15 \mathrm{~g} / 0,35 \mathrm{~mm}$ DA $10 \ldots . .55 \mathrm{~Hz}$

BOTH, RESET BOTH, RESET SEQ, SEQ
green LED U ON - indication of supply voltage $U$
yellow LEDs R1, R2 ON/OFF - output relays status

1 Contacts "inrush": high resistance to short-time surge currents occurring on switching on LED-lamps, ESL fluorescent tubes, electronic transformers, discharge lamps, etc. (2) Control contact $S$ provides control of switching ON/OFF of receivers (lighting or other devices) from a few different points, with the use of connected in parallel: momentary bell switches or control buttons; the relays cannot operate with illuminated switches. (3 EMC tests (electromagnetic compatibility): EN 55011, EN 61000-4-2/3/4/5/6/11. (4) Test carried out in the laboratory of Relpol S.A. The given parameters of switching power are illustrative value due to the large design diversity of lamps available on the market. The switching capacity of the load circuit depends on the characteristics of the inrush currents of the lamps used. © Where the control signal is recognizable. (6) Continuous voltage applied between A1, A2, activated with the control contact S. Length with 35 mm rail catches: $98,8 \mathrm{~mm}$.

## Functions

BOTH - Simultaneous switching ON and OFF with memory, controlled by pulses on the contact $S$.


On occurrence of a pulse on the control input S, output relays R1 and R2 are switched on. This status lasts until another control pulse occurs - then, the output relays R1 and R2 are switched off.

Further control pulses which will occur on the control input $S$ will change status of the contacts of R1 and R2 into an opposite one.
In case the $U$ supply is interrupted and then switched on again, the R1 and R2 contacts of the output relays will return to the status prior to switching the $U$ supply off, and the relay will start operation according to the foregoing function.

SEQ - Sequential switching ON and OFF with memory, controlled by pulses on the contact $S$.


When a pulse occurs on the control input S , the output relay R1 is switched on. The status lasts until another control pulse occurs - then, the output relay R1 is switched off, and the R2 relay is switched on. Another control pulse will activate the R1 contact - both R1 and R2 relays are on. Another control pulse S will switch both R1 and R2 relays off. Consecutive pulses occurring on the control input $S$ will cause a change of the status of the R1 and R2 contacts according to the foregoing sequence, i.e.:

- R1 off, R2 off (supply activated, R1, R2 were previously off),
- R1 on, R2 off (first control pulse),
- R1 off, R2 on (second control pulse),
- R1 on, R2 on (third control pulse),
- R1 off, R2 off (fourth control pulse), etc.

In case the $U$ supply is interrupted, the R1, R2 relays are switched off. Switching the supply voltage on again will recover the status of switching on / off of the R1, R2 relays prior to switching the $U$ supply off.
Further pulses to occur on the control input $S$ will cause a change of the status of the R1, R2 contacts according to the foregoing sequence, from the status prior to switching the supply off.

RESET BOTH - Simultaneous switching ON and OFF, controlled by pulses on the contact $S$.


On occurrence of a pulse on the control input S, output relays R1 and R2 are switched on. This status lasts until another control pulse occurs - then, the output relays R1 and R2 are switched off.

Further control pulses which will occur on the control input $S$ will change status of the contacts of R1 and R2 into an opposite one.
In case the $U$ supply is interrupted and then switched on again, the R1 and R2 contacts of the output relays will start operation from switching off (R1 off, R2 off). Then, when the pulse occurs again on the control input S , the relay will start operation according to the foregoing function.

RESET SEQ - Sequential switching ON and OFF, controlled by pulses on the contact S .


When a pulse occurs on the control input $S$, the output relay $R 1$ is switched on. The status lasts until another control pulse occurs - then, the output relay R1 is switched off, and the R2 relay is switched on. Another control pulse will activate the R1 contact - both R1 and R2 relays are on. Another control pulse S will switch both R1 and R2 relays off. Consecutive pulses occurring on the control input $S$ will cause a change of the status of the R1 and R2 contacts according to the foregoing sequence, i.e.:

- R1 off, R2 off (supply activated, R1, R2 were previously off),
- R1 on, R2 off (first control pulse),
- R1 off, R2 on (second control pulse),
- R1 on, R2 on (third control pulse),
- R1 off, R2 off (fourth control pulse), etc.

In case the $U$ supply is interrupted, the R1, R2 relays are switched off. Following switching the supply voltage on again, the R1, R2 remain off.
Further pulses to occur on the control input $S$ will cause a change in the status of the R1, R2 contacts according to the foregoing sequence.
$\mathbf{U}$ - supply voltage; $\mathbf{R 1} \mathbf{1 , R 2}$ - output states of the relays; $\mathbf{t}$ - time axis

## Additional functions

LEDs: green U, yellows R1, R2 - are lit permanently.
Adjustment of the set values: the function may be changed after the supply voltage has been switched off and on again. If the memory function was set, and a no-memory function is set next, the memory is cancelled in such case.

Triggering: the relay is triggered by connecting the contact S to the A 1 terminal, from connected in parallel switches / control buttons. For DC supply, the positive pole must be connected to A1 terminal.

Supply: the relay may be supplied with DC voltage or AC voltage $50 / 60 \mathrm{~Hz}$ of $10,2 . . .276 \mathrm{~V}$.

## Dimensions



Front panel description


## Connection diagrams



## Mounting

Relays RPB-2ZSMI-UNI are designed for direct mounting on 35 mm rail mount acc. to EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2}$ ( $1 \times 14$ AWG), stripping length: $6,5 \mathrm{~mm}$, max. tightening moment for the terminal: $0,5 \mathrm{Nm}$.


## Two catches:

easy mounting on 35 mm rail, firm hold (top and bottom).


## Mounting wires in clamps:

universal screw (cross-recessed or slotted head).

## Ordering codes



## PRECAUTIONS:

1. Ensure that the parameters of the product described in its specification provide a safety margin for the appropriate operation of the device or system and never use the product in circumstances which exceed the parameters of the product. 2. Never touch any live parts of the device. 3. Ensure that the product has been connected correctly. An incorrect connection may cause malfunction, excessive heating or risk of fire. 4. In case of any risk of any serious material loss or death or injuries
